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Summary of Apollo Drive Tubes

Figure 1:  Photo of double drive tube at Apollo 14.  NASA photo AS14-68-9454.  Foot prints
and cart tracks visible.

Introduction
In addition to 3 deep drill cores taken during Apollo
missions, as many as 21 shallow drive tubes were used
to core the lunar surface regolith down to ~50 cm.
Although it had been expected that there would be
significant stratigraphy preserved in these cores, little
was found.  When you think about it, you realize that

the continuous and random cratering of the lunar
surface results in a fine-grained mixture of rock and
fused soil fragments in a manner likened to “gardening”
(Shoemaker 1971; Arnold 1975).  However, the drill
cores and drive tubes did successfully record the profile
of cosmogenic radionuclides produced by solar and
galactic cosmic ray bombardment and the
corresponding neutron flux that extends with depth (1
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Table 1.  Apollo Drive Tubes (only).
weight length station containers other date Newsletter
grams cm. bag ALSRC dissected    #

10004 S 44.8 13.5 LM yes 23 grams biology 1978
10005 S 53.4 10 LM yes 27 grams biology 1978
12026 S 101.4 19.3 Surveyor Crater yes leaked, spilled, 47 g. bio.
12027 S 80 17.4 Sharp Crater yes leaked 1979 26
12028 U 189.6 31.6 Halo Crater yes leaked, compounded, 10 g. bio. 1970
12025 L 56.1 9.5 Halo Crater yes leaked
14220 S 80.7 16.5 G, near LM yes 1979 24
14230 S 76.7 12.5 North Triplet C. yes 1971
14211 U 39.5 7.5 Weird Crater yes 1978 23
14210 L 169.7 32.5 Weird Crater yes 7 grams biology 1978 23
15009 S 622 38.5 Spur Crater yes 1988 50.51
15008 U 510.2 30.4 St. George C. yes 1981 30
15007 L 768.2 35.6 St. George C. yes 1981 30
15011 U 660.7 32 edge Rille yes 1979 24
15010 L 740.4 35 edge Rille yes 1978 18, 24
60010 U 635.3 combine ALSEP site yes 1975 1
60009 L 759.8 65.4 ALSEP site yes 1975 1
60014 U 570.3 combine ALSEP site 1991 53
60013 L 757.3 63.1 ALSEP site 1991 53
64002 U 584.1 combine near South Ray yes 1980 32
64001 L 752.3 65.6 near South Ray yes 1980 34
68002 U 583.5 combine near South Ray yes 1980 55,56,58
68001 L 840.7 62.3 near South Ray yes 1981 56,57
69001 S 558.4 near South Ray cvsc unopened, In
70012 S 485 18.4 LM yes unopened
76001 S 711.6 34.5 6, North Massif yes oriented 1978 23
73002 U 429.7 combine Light mantle yes unopened, RSF
73001 L 809 56 Light mantle cvsc unopened, In
74002 U 909.6 combine Shorty Crater yes 1977 16
74001 L 1072 68.2 Shorty Crater yes 1981 13
79002 U 409.4 combine van Serg Crater yes 1986 47
79001 L 743.4 51.3 van Serg Crater yes 197 49

* weight from computer inventory In = Indium contamination
S=singe, U=upper, L=lower

– 2 meters) into the lunar regolith (e.g. Nishizumi et
al. 1977).

Throughout the six Apollo missions there was
continuous improvement, with better engineered cores,
better procedures and increasingly yield.  However, it
wasn’t until about 1978 that the curator figured out
how to extrude and properly examine the cores.  In
most cases the cores are now subdivided into carefully
documented splits, sets of continuous thin sections,
continuous “peels”, and the remaining epoxy
encapsulated reference core.  As of 2007 several drive
tubes are still unopened (Table 1).

The Drive Tubes
Table 1 gives a brief summary of the 21 drive tubes
collected during the 6 Apollo missions.  Apollo 11, 12
and 14 were collected in narrow tubes (with core
liners), while Apollo 15, 16 and 17 were collected in

wider tubes (figure 3).  The depth of penetration was
from 30 to about 70 cm.  They were variously capped
on the moon and some were returned in vacuum
containers (ALSRC and CVSC).  They weighed from
about 50 grams (10004) up to 2 kilograms (74001/2).

The core tubes used for Apollo 11 and 12 were
essentially the same design except for modification of
the core bits (figure 3).  The inner diameter was about
2 cm.  They consisted of an outer anodized aluminum
barrel attached to the bit and handle, and an aluminum
inner barrel made of two halves held together with a
Teflon sleeve (Allton 1989).  To open, they slit the
Teflon sleeve and removed one wall of the core liner
(figure 4).

The core tubes for Apollo 15, 16 and 17 were thin-
walled stainless steel with an inner diameter of about
4.1 cm.  The length was ~ 34 cm, so as to be able to fit
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Figure 2a:  Density of drive tubes from Apollo 15
(Preliminary Science Rept.).

Figure 2c:  Density of drive tubes from Apollo 17
(Preliminary Science Rept.).

Figure 2b:  Density of drive tubes from Apollo 16
(Preliminary Science Rept.).

in the ALSRC (but they were not all returned in
ALSRC).  They were extruded.

Soil Mechanics
During Apollo there was a large engineering effort
aimed at understanding the nature of the lunar regolith
(called the Soil Mechanics Experiment).  This PIship,
led by Prof. J.K. Mitchell at UC Berkeley, found
information obtained from the lunar drive tubes to be
especially interesting.  In general, drive tubes were
easily pushed into the soil up to about 20 cm, but
required hammer blows to obtain greater depth.  The
soil samples generally stuck in the cores as they were
pulled out, capped and returned (Sullivan 1994).

Density of the lunar regolith was one of the important
parameters that came out of soil mechanics
investigations.  Density was measured by dividing the
weight by the volume.  Initially, the sample weight was
calculated as the difference between the total weight
minus the preflight weight of the core tubes.  Volume
was calculated from the length of the core and its
diameter, and the length was obtained by gently pushing
plugs in the ends and x-raying the tube.  As a general
rule the bottom segment of each core was found to be
more dense than the top (figures 2 a,b,c).  Average

density was about 1.5 g/cm3, which is about half that
of a rock (~3.3 g/cm3).

Maturity
The maturity of the lunar regolith is measured by Is/
FeO, rare gas content, agglutinate % and/or grain size
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Figure 3:  Design of core “bits” for drive tubes for
different Apollo missions.  Note that the Apollo 15
cores were much wider, such that material was
much less disturbed.

Figure 4:  Drive tube 12028 with 2 cm thick coarse layer.  NASA S69-23404.  Scale in cm.

distribution (Heiken et al. 1992).  Housley et al. (1975)
and Morris (1976) showed that the relative
ferromagnetic resonance (Is/FeO), due to finely-divided
Fe metal, is an excellent indication of soil reworking
due to micrometeorite bombardment.

Thin sections have been prepared and studied along
the entire length of the cores.  They were made from
epoxy encapsulated material that remained in the core
tube after several dissection passes.

Apollo 11
“Two core tubes were driven, and each collected a
satisfactory sample.  Each tube had an internally
tapered bit that compressed the sample 2.2:1 inside
the tube.  One core tube contained 10 cm of sample,
and the other contained 13 cm of sample.  The tubes
were difficult to drive deeper that approximately 20

cm.  This difficulty may have been partially caused by
increasing density of the fine-grained material with
depth or by other mechanical characteristics of the
lunar regolith.  The difficulty of penetration was also
a function of the tapered bit, which caused greater
resistance with increased penetration.  One tube was
difficult to attach to the extension handle.   When this
tube was detached from the extension handle, the butt
end of the tube unscrewed and was lost on the lunar
surface. The tubes were opened after the flight, and
the split liners inside both tubes were found to be offset
at the bit end.  The Teflon core follower in one tube
was originally inserted upside down, and the follower
in the other tube was inserted without the expansion
spring which holds the follower snugly against the
inside of the split tube.”(Mission Evaluation Team
1971)

During the quarantine and preliminary examination
(PET) a large part of each Apollo 11 core was used
(sacrificed) for biologic studies.  In 1978, the remainder
was examined and sieved to extract additional rock
fragments for Gerry and Dimitri (Allton 1978).

Apollo 12
Drive tube 12026 was collected near the Lunar Module.
12027 was collected from the bottom of the trench (20
cm deep) at Sharp Crater where 12023 and 12024 were
collected.  It penetrated another 17 cm or so.  12025 –
12028 was a double drive tube collected from near Halo
crater.  The lower segment, 12028, had a very distinct
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Figure 5:  Device used to extrude drive tubes (A15-17) into dissection tray (on cart).  S80-43518.  Tube
is about 4 cm diameter.

coarse layer (figure 4).  However, on Apollo 12,
ALSRC#2 containing the core tubes leaked to about
one half atmosphere.

Apollo 14
The Apollo 14 crew experienced difficulty getting full
core tubes at Apollo 14.  They had planned to get a
triple drive tube, but struck a rock, denting the end.  At
Cone Crater the material in the tube fell out.  They
ended up leaving 2 empty core tubes on the moon, but
were able to obtain a double drive tube (14211-14210)
and two singles (14210 and 14220).  However, these
were not returned in vacuum containers.

Apollo 15
One drive tube was collected on each of the three EVA.
Double drive tube (15008-15007) was taken at station
2 on the rim of a 10-m crater between Elbow and St.
George Crater at the Apennine Front.  The crew pushed
the first tube in full length, but it took 35 hammer blows
to sink the upper tube.  On the second EVA, a single
core (15009) was taken at station 6 on the Apennine
Front near Spur Crater.  The crew just pushed it in.  A
third core (15011 – 15010) was taken, as a double core,
from near the edge of Hadley Rille, station 9A.  The

bottom 2/3 went in easy, but it took 50 hammer blows
to complete the core.

Apollo 16
Sutton (in Ulrich et al. 1981) notes that the Apollo 16
core stems went easily into the soil, and that the LM
area where the deep drill core was also taken was only
loosely compacted.  Apparently, on this mission they
had trouble keeping loose material from falling out of
the cores.

Double drive tube 60009/10 has often been studied
instead of the deep drill (Korotev 1991).  It was
collected, along with the deep drill and drive tube
60014/13, from the ALSEP site on the Cayley Plains
at Apollo 16.  It was easily pushed in to 18 cm, but
then had to be hammered hard.  It apparently broke
through a rock fragment at depth.  The core was placed
in ALSRC#2, which was returned under good vacuum.
Details of the dissection of 60009/10 and a review of
the science is summarized in the catalog by Fruland et
al. (1982).

Double drive tubes 64002/1 and 68002/1 should contain
fresh material ejected from South Ray Crater, but it
could not be identified.
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Figure 6:  Profile of 53Mn activity with depth for various drill cores and drive tubes (Nishiizumi
et al 1979).  The curves marked SCR and GCR are predicted by the Reedy-Arnold model.

Figure 7:  Activity of 14C in lunar cores and Apollo
15 deep drill (from Jull et al. 1998).

69001 was immediately placed in a core sample
vacuum container (CVSC), which, as of today, has not
been opened.

No core was taken at North Ray Crater.

Apollo 17
As with previous missions the bulk density of the lower
tube is always higher than the upper, indicating that
the regolith is more dense below 10-20 cm (Mitchell
et al. 1973).

70012 is a single drive tube that was hand driven to a
hard layer at 28 cm depth into the regolith next to the
footpad of the LM.  The top few cm may have been
blown away by the exhaust of the LM descent
propulsion engine.  It was returned in the BSLSS bag.
When the BSLSS bag was opened in the LRL, the
bottom cap of the core had come off with material
spilling out (47 grams of core material was removed
to create a fresh vertical face, which was then plugged
for X-radiography).  Additional spilled material was

in the BSLSS (PET report).  As of 2007, this core has
not been dissected.

73002 and 73001 is a double drive tube that was taken
at station 3 in an effort to sample the light mantle
(landslide).  The lower segment, 73001, was vacuum
sealed in a core vacuum sample container.  The total
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Figure 8:  Image of epoxy encapsulated core 76001 - sawn lengthwise, twice - scanned at low
resolution (100dpi) - and  compressed.  Total length is ~30 cm.  See section on 76001 for
high resolution.

depth penetrated was 70.6 cm (9 hammer blows).  The upper segment, 73002, was
about 22 cm long.  It was taken in the area of several small fresh craters and the lunar
surface fairly rough, with about 20% coverage of 1-2 cm fragments.  Trench 73220-
73280, from near the rim of one of the small craters, showed a marbled layering.
Neither 73002 nor 73001 have been opened (as of 2007).  However, material from
the trench has been studied.

76001 is a single drive tube collected from the soil at the bottom of the North Massif
about 250 meters from the mare boundary.  It was simply pushed in, up to about 16
cm, and then hammered (5-6 blows) to 37.1 cm (34.5 cm were recovered).  It was
found to rather homogeneous along it length (figure 8).

Double drive tube 74002/1 (68.2 cm long) was taken next to the trench in the orange
soil at Shorty Crater.  It is one of the most densely packed cores, with each segment
weighing about 1 kg.  The top few cm have been gardened, but the remainder has
been in place for a very long time (Eugster et al. 1980).

Drive tube 79002/1 (51.3 cm long) was taken at van Serg Crater, out on the mare
plain.  The top 8 cm of this core is slightly more mature than the rest of the core
(Morris et al. 1989).

Chemical Composition
Although cores were dissected into splits every 0.5 cm, chemical analyses of all these
splits somehow can’t be found in the literature.  Table 2 gives a sample of what can be
found.

Cosmogenic Radionuclides
Figure 6 is a summary of the cosmic ray induced
activity of 53Mn as a function of depth in the lunar
surface as determined from drill cores and drive tubes
(Nishiizumi et al. 1979).  Figure 7 shows the activity
of 14C (Jull et al. 1998).  As techniques continue to
improve, and new questions are asked, lunar samples
are found to be a “gift that keeps on giving”(Drake).

Processing
Early processing (~1972) of drive tubes included X-
ray radiography, and sampling the ends of each
segment.  Starting about 1978, the large diameter drive
tubes (A15, 16 and 17) were then extruded into a
layered core receptacle to allow careful dissection
(figure 5).  Some early drive tubes (A11, 12 and 14)
were processed differently (see core catalog for details).
Dissection consisted of carefully spooning material in
a sequential manner, cm by cm in multiple (3) passes.
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Table 2.  Chemical composition of drive tubes.
12027 14210 14220 15007 60009 60010 74001/2 76001 79001/2

reference Smith84 Laul82 Laul82 Korotev87 Ali 76 Ali 77 Blanchard78 Korotev Morris 89
weight 16 cm 36 cm 16 cm top of unit 1 unit 4 0 - 2 cm 2 - 68 cm unpub. ave
SiO2 % 46.4 44.3 48.1 ave
TiO2 2.6 (a) 1.7 1.6 1.31 0.63 0.4 0.81 8.8 8.9
Al2O3 13.6 (a) 17.1 17.6 20 27.8 32.7 29.3 6.7 5.8
FeO 16.1 (a) 10.7 10.5 10.1 4.64 2.12 4.41 22.5 23.7 10.58 15.61 (a)
MnO 0.19 (a) 0.14 0.13 0.14 0.1 0.039 0.075 0.26 0.27
MgO 10 (a) 9.1 9.5 10.6 7.11 3.95 5.47 14 15
CaO 10.8 (a) 11.2 11.6 11.7 16.2 18.2 17.1 8.6 7.6 12.3 (a)
Na2O 0.59 (a) 0.68 0.76 0.46 0.4 0.39 0.4 0.45 0.42 0.39 0.4 (a)
K2O 0.36 (a) 0.51 0.52 0.114 0.146 0.094
P2O5
S %
sum

Sc ppm 38 (a) 22.2 21.7 18.6 7.24 3.04 7.94 49 48 28.2 50.3 (a)
V 110 (a) 45 40 64 23.8 12 35.5
Cr 2258 (a) 1334 1266 1940 770 260 700 5063 5200 1887 2924 (a)
Co 40 (a) 35.7 35 30.5 23.4 8.74 28.7 60 66 37.6 36.1 (a)
Ni 290 (a) 400 420 165 370 244 186 (a)
Cu
Zn
Ga
Ge ppb
As
Se
Rb
Sr 200 170 150 154
Y
Zr 550 770 770 350 165
Nb
Mo
Ru
Rh
Pd ppb
Ag ppb
Cd ppb
In ppb
Sn ppb
Sb ppb
Te ppb
Cs ppm 0.24
Ba 540 730 830 235 133 60 160 118 102 (a)
La 49 62 65 22 12.2 4.8 11.3 6.4 5.9 9.55 8.56 (a)
Ce 120 170 180 57 30.3 11.3 22 24 21 26.9 25.3 (a)
Pr
Nd 80 100 100 33 22.7 6.8 14 17 (a)
Sm 22 27.8 28.5 10.4 4.5 1.7 5 7.4 6.9 5.9 7.32 (a)
Eu 2.1 2.4 2.35 1.34 1.12 0.97 1.11 1.85 1.88 1.29 1.51 (a)
Gd
Tb 3.6 5.55 5.5 1.96 0.84 0.32 0.71 1.7 1.6 1.35 1.68 (a)
Dy 27 41 38 2.6
Ho 8.4 8.3
Er
Tm 2.3 3 3.2
Yb 15.7 21.1 21.5 7.3 3.75 1.59 2.61 4.5 4.2 4.81 6.09 (a)
Lu 2.25 2.94 2.9 1 0.42 0.16 0.56 0.66 0.59 0.673 0.86 (a)
Hf 15 21.7 24.9 8.4 2.65 0.96 3.5 5.9 6.3 4.83 6.39 (a)
Ta 2.2 3 3 0.97 0.61 0.17 0.37 1.3 1.2 0.75 1.07 (a)
W ppb
Re ppb
Os ppb
Ir ppb 4.3 8.8 6 (a)
Pt ppb
Au ppb 2.1 4.1 (a)
Th ppm 7.7 11.9 13.5 3.8 1.72 0.6 1 0.5 0.4 1.55 1.06 (a)
U ppm 2.2 3.2 3.5 1.18 0.42 (a)
technique:  (a) INAA
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After the final pass, a thin coating of plastic was used
to create a “peel” in order to have a continuous section
of material (but this material was disturbed by the final
dissection).  These “peels” are stored in a restricted
access collection (RAC).

Material laying in the bottom of the core after the
dissection and “peel”, was impregnated with epoxy and
made into thin sections (see attached tables).  In this
process, epoxy encapsulated core material, maintaining
stratigraphy, was created for the full length of each
core.  These were sawn in half, lengthwise, twice.  One
third was subdivided into potted butts for thin sections
and the other thirds were preserved as a reference
(figure 8).  Included in this section of the Lunar Sample
Compendium are enlarged photos (and collages) of the
sawn surfaces of these encapsulated cores (shown here
for the very first time).  The various core catalogs and
supplements have additional collages of the thin
sections, loose dirt during dissection passes and of the
peels, but they are no very revealing.
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